Definite Integration Question 299

Question: $ \int_0^{1/\sqrt{2}}{\frac{{{\sin }^{-1}}x}{{{(1-x^{2})}^{3/2}}}dx=} $

[Roorkee 1984]

Options:

A) $ \frac{\pi }{4}+\frac{1}{2}\log 2 $

B) $ \frac{\pi }{4}-\frac{1}{2}\log 2 $

C) $ \frac{\pi }{2}+\log 2 $

D) $ \frac{\pi }{2}-\log 2 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_0^{1/\sqrt{2}}{\frac{{{\sin }^{-1}}x}{{{(1-x^{2})}^{3/2}}}}dx $

Put $ {{\sin }^{-1}}x=t\Rightarrow \frac{1}{\sqrt{1-x^{2}}}dx=dt $ and $ x=\sin t $

Also $ t=0 $ to $ \frac{\pi }{4} $ as $ x=0 $ to $ \frac{1}{\sqrt{2}} $

$ \Rightarrow I=\int_0^{\pi /4}{t.{{\sec }^{2}}tdt=\frac{\pi }{4}-\frac{1}{2}\log 2} $ .