Definite Integration Question 3

Question: If $ I=\int_0^{100\pi }{\sqrt{(1-\cos 2x)}dx,} $ then the value of $ I $ is

Options:

A) $ 100\sqrt{2} $

B) $ 200\sqrt{2} $

C) $ 50\sqrt{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_0^{\pi }{\sqrt{(1-\cos 2x)}dx+\int _{\pi }^{2\pi }{\sqrt{(1-\cos 2x)}}dx}+…. $

$ …..+\int _{(r-1)\pi }^{r\pi }{\sqrt{(1-\cos 2x)}dx+…..+\int _{99\pi }^{100\pi }{\sqrt{(1-\cos 2x)}}dx} $

$ \because \int_0^{na}{f(x)dx=n\int_0^{a}{f(x)dx}} $ , if $ f(a+x)=f(x) $

$ \therefore $ $ I=100\int_0^{\pi }{\sqrt{(1-\cos 2x)}}dx $

$ I=100\sqrt{2}\int_0^{\pi }{\sin xdx=200\sqrt{2}\int_0^{\pi /2}{\sin xdx}} $

$ =200\sqrt{2}[-\cos x]_0^{\pi /2}=200\sqrt{2} $ .