Definite Integration Question 301

Question: $ \int_0^{\pi /4}{\log (1+\tan \theta )d\theta =} $

[SCRA 1986; Karnataka CET 2000, 05]

Options:

A) $ \frac{\pi }{4}\log 2 $

B) $ \frac{\pi }{4}\log \frac{1}{2} $

C) $ \frac{\pi }{8}\log 2 $

D) $ \frac{\pi }{8}\log \frac{1}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_0^{\pi /4}{\log (1+\tan \theta )d\theta } $

therefore $ I=\int_0^{\pi /4}{\log { 1+\tan ( \frac{\pi }{4}-\theta ) }}d\theta $

therefore I = $ \int_0^{\pi /4}{\log ( 1+\frac{1-\tan \theta }{1+\tan \theta } )d\theta } $

therefore I = $ \int_0^{\pi /4}{\log 2d\theta -\int_0^{\pi /4}{\log (1+\tan \theta )d\theta }} $

$ \Rightarrow I=\frac{1}{2}\int_0^{\pi /4}{\log 2d\theta =\frac{\log 2}{2}|\theta |_0^{\pi /4}=\frac{\pi }{8}\log 2} $ .