Definite Integration Question 303

Question: The volume of spherical cap of height h cut off from a sphere of radius a is equal to

[UPSEAT 2004]

Options:

A) $ \frac{\pi }{3}h^{2}(3a-h) $

B) $ \pi (a-h)(2a^{2}-h^{2}-ah) $

C) $ \frac{4\pi }{3}h^{3} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

The required volume of the segment is generated by revolving the area ABCA of the circle $ x^{2}+y^{2}=a^{2} $ about the x-axis and for the arc BA, Here $ CA=h $ and $ OA=a $ , (given)
$ OC=OA-CA=a-h $ , $ x $ varies from $ a-h $ to a. The required volume $ =\int _{a-h}^{a}{\pi y^{2}dx} $

$ =\pi \int _{a-h}^{a}{(a^{2}-x^{2})dx} $ , $ (\because x^{2}+y^{2}=a^{2}) $
$ =\pi [ a^{2}x-\frac{1}{3}x^{3} ] _{a-h}^{a}=\pi [ (a^{3}-\frac{1}{3}a^{3}-{ a^{2}(a-h)-\frac{1}{3}{{(a-h)}^{3}} } ] $
$ =\pi [ ( a^{3}-\frac{1}{3}a^{3} )-{ a^{3}-a^{2}h-\frac{1}{3}( a^{3}-3a^{2}h+3ah^{2}-h^{3} ) } ] $
$ =\pi [ a^{2}h-a^{2}h+ah^{2}-\frac{1}{3}h^{3} ] $

$ =\frac{1}{3}\pi h^{2}(3a-h) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें