Definite Integration Question 303

Question: The volume of spherical cap of height h cut off from a sphere of radius a is equal to

[UPSEAT 2004]

Options:

A) $ \frac{\pi }{3}h^{2}(3a-h) $

B) $ \pi (a-h)(2a^{2}-h^{2}-ah) $

C) $ \frac{4\pi }{3}h^{3} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

The required volume of the segment is generated by revolving the area ABCA of the circle $ x^{2}+y^{2}=a^{2} $ about the x-axis and for the arc BA, Here $ CA=h $ and $ OA=a $ , (given)
$ OC=OA-CA=a-h $ , $ x $ varies from $ a-h $ to a. The required volume $ =\int _{a-h}^{a}{\pi y^{2}dx} $

$ =\pi \int _{a-h}^{a}{(a^{2}-x^{2})dx} $ , $ (\because x^{2}+y^{2}=a^{2}) $
$ =\pi [ a^{2}x-\frac{1}{3}x^{3} ] _{a-h}^{a}=\pi [ (a^{3}-\frac{1}{3}a^{3}-{ a^{2}(a-h)-\frac{1}{3}{{(a-h)}^{3}} } ] $
$ =\pi [ ( a^{3}-\frac{1}{3}a^{3} )-{ a^{3}-a^{2}h-\frac{1}{3}( a^{3}-3a^{2}h+3ah^{2}-h^{3} ) } ] $
$ =\pi [ a^{2}h-a^{2}h+ah^{2}-\frac{1}{3}h^{3} ] $

$ =\frac{1}{3}\pi h^{2}(3a-h) $ .