Definite Integration Question 308

Question: The area enclosed by the parabola $ y^{2}=4ax $ and the straight line $ y=2ax, $ is

[MP PET 1993]

Options:

A) $ \frac{a^{2}}{3} $ sq. unit

B) $ \frac{1}{3a^{2}} $ sq. unit

C) $ \frac{1}{3a} $ sq. unit

D) $ \frac{2}{3a} $ sq. unit

Show Answer

Answer:

Correct Answer: C

Solution:

The points of intersection of the parabola $ y^{2}=4ax $ and the chord $ y=2ax $ is obtained by solving these equations simultaneously. $ y^{2}=4ax,y=2ax\Rightarrow {{(2ax)}^{2}}=4ax $

therefore $ x[4a^{2}x-4a]=0 $
$ \Rightarrow 4ax[ax-1]=0 $

therefore $ x=0 $ or $ x=\frac{1}{a} $ Also $ x=0\Rightarrow y=0 $ and $ x=\frac{1}{a} $

therefore $ y=\pm 2 $

Hence the required points are (0,0) and $ [ \frac{1}{a},2 ] $ . Now required area $ =\int_0^{1/a}{[\sqrt{4ax}-2ax}]dx=\frac{1}{3a}sq $ . unit.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें