Definite Integration Question 308

Question: The area enclosed by the parabola $ y^{2}=4ax $ and the straight line $ y=2ax, $ is

[MP PET 1993]

Options:

A) $ \frac{a^{2}}{3} $ sq. unit

B) $ \frac{1}{3a^{2}} $ sq. unit

C) $ \frac{1}{3a} $ sq. unit

D) $ \frac{2}{3a} $ sq. unit

Show Answer

Answer:

Correct Answer: C

Solution:

The points of intersection of the parabola $ y^{2}=4ax $ and the chord $ y=2ax $ is obtained by solving these equations simultaneously. $ y^{2}=4ax,y=2ax\Rightarrow {{(2ax)}^{2}}=4ax $

therefore $ x[4a^{2}x-4a]=0 $
$ \Rightarrow 4ax[ax-1]=0 $

therefore $ x=0 $ or $ x=\frac{1}{a} $ Also $ x=0\Rightarrow y=0 $ and $ x=\frac{1}{a} $

therefore $ y=\pm 2 $

Hence the required points are (0,0) and $ [ \frac{1}{a},2 ] $ . Now required area $ =\int_0^{1/a}{[\sqrt{4ax}-2ax}]dx=\frac{1}{3a}sq $ . unit.