Definite Integration Question 310

Question: Area bounded by the curve $ x^{2}=4y $ and the straight line $ x=4y-2 $ is

[SCRA 1986; IIT 1981; Pb. CET 2003]

Options:

A) $ \frac{8}{9} $ sq. unit

B) $ \frac{9}{8} $ sq. unit

C) $ \frac{4}{3} $ sq. unit

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Solving the equations $ x^{2}=4y $ and $ x=4y-2 $ simultaneously. The points of intersection of the parabola and the line are $ A(2,1) $ and $ B( -1,\frac{1}{4} ) $ . The required area = shaded area $ =[ \int _{-1}^{2}{yd{x _{(forx=4y-2)}}} ]-[ \int _{-1}^{2}{yd{x _{(forx^{2}=4y)}}} ] $

$ =\int _{-1}^{2}{\frac{1}{4}(x+2)dx-\int _{-1}^{2}{\frac{1}{4}x^{2}dx}} $

$ =\frac{1}{4}[ \frac{x^{2}}{2}+2x ] _{-1}^{2}-\frac{1}{4}[ \frac{x^{3}}{3} ] _{-1}^{2}=\frac{9}{8} $ sq. unit.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें