Definite Integration Question 312

Question: Area bounded by the curve $ y=x{e^{x^{2}}}, $

$ x- $ axis and the ordinates $ x=0,x=a $

Options:

A) $ \frac{{e^{a^{2}}}+1}{2} $ sq. unit

B) $ \frac{{e^{a^{2}}}-1}{2} $ sq. unit

C) $ {e^{a^{2}}}+1 $ sq. unit

D) $ {e^{a^{2}}}-1 $ sq. unit

Show Answer

Answer:

Correct Answer: B

Solution:

Required area is $ \int_0^{a}{ydx=\int_0^{a}{x{e^{x^{2}}}dx}} $

We put $ x^{2}=t\Rightarrow dx=\frac{dt}{2x} $ as $ x=0\Rightarrow t=0 $ and $ x=a\Rightarrow t=a^{2} $ , then it reduces to $ \frac{1}{2}\int_0^{a^{2}}{e^{t}dt=\frac{1}{2}[e^{t}]_0^{a^{2}}=\frac{{e^{a^{2}}}-1}{2}} $ sq. unit.