Definite Integration Question 313

Question: The correct evaluation of $ \int_0^{\pi /2}{\sin x\sin 2x} $ is

[MP PET 1993, 2003]

Options:

A) $ \frac{4}{3} $

B) $ \frac{1}{3} $

C) $ \frac{3}{4} $

D) $ \frac{2}{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ I=\int_0^{\pi /2}{\sin x\sin 2xdx}=2\int_0^{\pi /2}{{{\sin }^{2}}x\cos xdx} $

Put $ t=\sin x\Rightarrow dt=\cos xdx $

Now, $ I=2\int_0^{1}{t^{2}dt=\frac{2}{3}[t^{3}]_0^{1}=\frac{2}{3}} $ .