Definite Integration Question 316

Question: If the area bounded by $ y=ax^{2} $ and $ x=ay^{2} $ , $ a>0 $ , is 1, then $ a= $

[IIT Screening 2004]

Options:

A) 1

B) $ \frac{1}{\sqrt{3}} $

C) $ \frac{1}{3} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

The x-coordinate of A is $ \frac{1}{a} $

According to the given condition, $ 1=\int_0^{1/a}{( \sqrt{\frac{x}{a}}-ax^{2} )}dx $

therefore $ 1=\frac{1}{\sqrt{a}}.\frac{2}{3}[{x^{3/2}}]_0^{1/a}-\frac{a}{3}[x^{3}]_0^{1/a} $

therefore $ a^{2}=\frac{1}{3}\Rightarrow a=\frac{1}{\sqrt{3}} $ .