Definite Integration Question 323

Question: $ \int_0^{2\pi }{\frac{\sin 2\theta }{a-b\cos \theta }d\theta =} $

[Roorkee 1988]

Options:

A) 1

B) 2

C) $ \frac{\pi }{4} $

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int_0^{2\pi }{\frac{\sin 2\theta }{a-b\cos \theta }d\theta =\int_0^{2\pi }{\frac{\sin (2\pi -2\theta )}{a-b\cos (2\pi -\theta )}d\theta }} $

therefore I $ =-\int_0^{2\pi }{\frac{\sin 2\theta }{a-b\cos \theta }d\theta } $

$ \Rightarrow 2I=0\Rightarrow \int_0^{2\pi }{\frac{\sin 2\theta }{a-b\cos \theta }d\theta =0} $ .