Definite Integration Question 325

Question: Let $ f(x) $ be a non-negative continous function such that the area bounded by the curve $ y=f(x) $ , x-axis and the ordinates $ x=\frac{\pi }{4} $ , $ x=\beta >\frac{\pi }{4} $ is $ ( \beta \sin \beta +\frac{\pi }{4}\cos \beta +\sqrt{2}\beta ) $ . Then $ f\ ( \frac{\pi }{2} ) $ is

[AIEEE 2005]

Options:

A) $ ( 1-\frac{\pi }{4}-\sqrt{2} ) $

B) $ ( 1-\frac{\pi }{4}+\sqrt{2} ) $

C) $ ( \frac{\pi }{4}+\sqrt{2}-1 ) $

D) $ ( \frac{\pi }{4}-\sqrt{2}+1 ) $

Show Answer

Answer:

Correct Answer: B

Solution:

Given that, $ \int _{\pi /4}^{\beta }{f\ (x)dx} $

$ =\beta \sin \beta +\frac{\pi }{4}\cos \beta +\sqrt{2}\beta $

Differentiating w.r.t. b, we get
$ \therefore $ $ f(\beta )=\sin \beta +\beta \cos \beta -\frac{\pi }{4}\sin \beta +\sqrt{2} $ ,

Hence, $ f\ ( \frac{\pi }{2} )=( 1-\frac{\pi }{4}+\sqrt{2} ) $ .