Definite Integration Question 331

Question: Let $ f(x) $ be a function satisfying $ {f}’(x)=f(x) $ with $ f(0)=1 $ and $ g(x) $ be the function satisfying $ f(x)+g(x)=x^{2}. $ The value of integral $ \int_0^{1}{f(x)g(x)dx} $ is equal to

[AIEEE 2003; DCE 2005]

Options:

A) $ \frac{1}{4}(e-7) $

B) $ \frac{1}{4}(e-2) $

C) $ \frac{1}{2}(e-3) $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

We have $ f’(x)=f(x)\Rightarrow \frac{f’(x)}{f(x)}=1 $

therefore $ \log f(x)=x+\log c\Rightarrow f(x)=ce^{x} $

Since $ f(0)=1 $ , therefore $ 1=ce^{0}\Rightarrow c=1 $

Thus $ f(x)=e^{x} $ .

Hence $ g(x)=x^{2}-e^{x} $

$ \therefore \int_0^{1}{f(x)g(x)dx=\int_0^{1}{e^{x}(x^{2}}-e^{x})dx} $

$ =e-\frac{1}{2}e^{2}-\frac{3}{2} $ .