Definite Integration Question 332

Question: If $ I _{m}=\int_1^{x}{{{(\log x)}^{m}}dx} $ satisfies the relation $ I _{m}=k-l{I _{m-1}}, $ then

Options:

A) $ k=e $

B) $ l=m $

C) $ k=\frac{1}{e} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ I _{m}=\int_1^{x}{{{(\log x)}^{m}}dx}=({{(\log x)}^{m}}.x)_1^{x}-\int_1^{x}{m{{(\log x)}^{m-1}}.\frac{1}{x}xdx} $

$ ={{(\log x)}^{m}}.x-m{I _{m-1}} $

$ \therefore $ $ I _{m}=k-l{I _{m-1}}\Rightarrow k-l{I _{m-1}}=x{{(\log x)}^{m}}-m{I _{m-1}} $

therefore $ k=x{{(\log x)}^{m}},l=m $ .