Definite Integration Question 336

Question: If $ \int_0^{x}{f(t)dt}=x+\int_x^{1}{tf(t)dt,} $ then the value of $ f(1) $ is

[IIT 1998; AMU 2005]

Options:

A) 1/2

B) 0

C) 1

D) -1/2

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_0^{x}{f(t)dt=x+\int_x^{1}{tf(t)dt\Rightarrow \int_0^{x}{f(t)dt=x-\int_1^{x}{tf(t)dt}}}} $

Differentiating w.r.t x, we get $ f(x)=1+{0-xf(x)} $

therefore $ f(x)=1-xf(x)\Rightarrow (1+x)f(x)=1\Rightarrow f(x)=\frac{1}{1+x} $

$ f(1)=\frac{1}{1+1}=\frac{1}{2} $ .