Definite Integration Question 339

Question: If $ n $ is any integer, then $ \int_0^{\pi }{{e^{{{\cos }^{2}}x}}{{\cos }^{3}}(2n+1)xdx=} $

[IIT 1985; RPET 1995; UPSEAT 2001]

Options:

A) $ x $

B) 1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Since $ \cos (2n+1)(\pi -x)=\cos [(2n+1)\pi $

$ -(2n+1)x] $

= $ -\cos (2n+1)x $ and $ {{\cos }^{2}}(\pi -x)={{\cos }^{2}}x $
So that $ f(2a-x)=-f(x) $ , and hence by the property of definite integral $ \int_0^{\pi }{{e^{{{\cos }^{2}}x}}{{\cos }^{3}}(2n+1)xdx=0} $ .