Definite Integration Question 34

Question: $ \int _{0}^{3}{|2-x|dx} $ equals

[RPET 1999]

Options:

A) 2/7

B) 5/2

C) 3/2

D) $ -3/2 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_0^{3}{|2-x|dx} $

$ =\int_0^{2}{(2-x)}dx+\int_2^{3}{-(2-x)dx} $

$ =\int_0^{2}{(2-x)}dx-\int_2^{3}{(2-x)dx}=[ 2x-\frac{x^{2}}{2} ]_0^{2}-[ 2x-\frac{x^{2}}{2} ]_2^{3} $

$ \int_0^{\pi }{| {{\sin }^{4}}x |dx=2\int_0^{\pi /2}{{{\sin }^{4}}xdx}} $

$ =2-[ 4-\frac{9}{2} ] $

$ =\frac{5}{2} $ .