Definite Integration Question 340

Question: $ \int_3^{8}{\frac{2-3x}{x\sqrt{(1+x)}}}dx $ is equal to

[Pb. CET 2001]

Options:

A) $ 2\log ( 3/2e^{3} ) $

B) $ \log (3/e^{3}) $

C) $ 4\log (3/e^{3}) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

We have $ \int_3^{8}{\frac{2-3x}{x\sqrt{1+x}}dx=I} $

Put $ 1+x=t^{2}\Rightarrow dx=2tdt $

When $ x=3\to 8, $ then $ t=2\to 3 $

$ I=2\int_2^{3}{\frac{5-3t^{2}}{t^{2}-1}dt} $ ; $ I=2\int_2^{3}{( \frac{2}{t^{2}-1}-3 )}dt $

$ I=2[ \frac{2}{2.1}\log \frac{t-1}{t+1}-3t ]_2^{3} $ ; $ I=2\log ( \frac{3}{2e^{3}} ) $ .