Definite Integration Question 341

Question: $ \int_0^{1}{\frac{{{\tan }^{-1}}x}{1+x^{2}}}dx= $

[SCRA 1987; MNR 1990]

Options:

A) $ \frac{{{\pi }^{2}}}{8} $

B) $ \frac{{{\pi }^{2}}}{16} $

C) $ \frac{{{\pi }^{2}}}{4} $

D) $ \frac{{{\pi }^{2}}}{32} $

Show Answer

Answer:

Correct Answer: D

Solution:

Put $ t={{\tan }^{-1}}x\Rightarrow dt=\frac{1}{1+x^{2}}dx, $ then $ \int_0^{1}{\frac{{{\tan }^{-1}}x}{1+x^{2}}dx=\int_0^{\pi /4}{tdt=[ \frac{t^{2}}{2} ]_0^{\pi /4}=\frac{{{\pi }^{2}}}{32}}} $ .