Definite Integration Question 344

Question: If $ f(x)=\int _{-1}^{x}{|t|dt,} $

$ x\ge -1, $ then

[MNR 1994]

Options:

A) $ f $ and $ {f}’ $ are continuous for $ x+1>0 $

B) $ f $ is continuous but $ {f}’ $ is not continuous for $ x+1>0 $

C) $ f $ and $ {f}’ $ are not continuous at $ x=0 $

D) $ f $ is continuous at $ x=0 $ but $ {f}’ $ is not so

Show Answer

Answer:

Correct Answer: A

Solution:

Let us divide the interval into two sub-intervals $ I_1 $, $ -1\le x<0 $ so that x is -ve and $ I_2 $, $ x\ge 0 $ so that x is +ve. For $ I_1,f(x)=\int _{-1}^{x}{(-t)dt=-\frac{1}{2}(x^{2}-1)} $ …..(i)
For $ I_1,f(x)=\int _{-1}^{x}{(-t)dt=-\frac{1}{2}(x^{2}-1)} $
$ =-\frac{1}{2}[t^{2}] _{-1}^{0}+\frac{1}{2}[t^{2}]_0^{x}=\frac{1}{2}(1+x^{2}) $ …..(ii)

Hence the function can be defined as follows $ f(x)= \begin{cases} & -\frac{1}{2}(x^{2}-1),\quad\text{if}\ -1\le x<0 \ \end{cases} . $ For $ f,L=R=V=\frac{1}{2} $ at $ x=0 $ , so $ f $ is continuous at $ x=0 $ . For $ f’,L=R=V=0 $ at $ x=0 $ , so $ f’ $ is also continuous at $ x=0 $ . Thus both $ f $ and $ f’ $ are continuous at $ x=0 $ and hence both are continuous for $ x>-1 $ i.e., $ x+1>0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें