Definite Integration Question 346

Question: The smallest interval $ [a,b] $ such that $ \int_0^{1}{\frac{dx}{\sqrt{1+x^{4}}}}\in [a,b] $ is given by

Options:

A) $ [ \frac{1}{\sqrt{2}},1 ] $

B) $ [0,1] $

C) $ [ \frac{1}{2},2 ] $

D) $ [ \frac{3}{4},1 ] $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ I=\int_0^{1}{\frac{dx}{\sqrt{1+x^{4}}}} $

Here, $ 0\le x\le 1\Rightarrow 1\le (1+x^{4})\le 2 $

therefore $ 1\le \sqrt{1+x^{4}}\le \sqrt{2}\Rightarrow \frac{1}{\sqrt{2}}\le \frac{1}{\sqrt{1+x^{4}}}\le 1 $

therefore $ \frac{1}{\sqrt{2}}\le \int_0^{1}{\frac{dx}{\sqrt{1+x^{4}}}\le 1} $

Hence $ [ \frac{1}{\sqrt{2}},1 ] $ is the smallest interval, such that $ I\in [ \frac{1}{\sqrt{2}},1 ] $ . Note: If $ m= $ least value of $ f(x) $ and M= greatest value of $ f(x) $ in [a, b], then $ m(b-a)\le \int_a^{b}{f(x)dx\le M(b-a)} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें