Definite Integration Question 349

Question: Let $ f:R\to R $ and $ g:R\to R $ be continuous functions, then the value of the integral $ \int _{-\pi /2}^{\pi /2}{[f(x)+f(-x)][g(x)-g(-x)]dx=} $

[IIT 1990; DCE 2000; MP PET 2001]

Options:

A) $ \pi $

B) 1

C) $ -1 $

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ h(x)={f(x)+f(-x)}{g(x)-g(-x)} $

$ h(-x)={f(-x)+f(x)}{g(-x)-g(x)} $

$ =-{f(-x)+f(x)}{g(x)-g(-x)}=-h(x) $

Therefore, $ \int _{-\pi /2}^{\pi /2}{h(x)dx=0} $ .