Definite Integration Question 35

Question: $ \int _{\pi }^{10\pi }{|\sin x|dx} $ is

[AIEEE 2002]

Options:

A) 20

B) 8

C) 10

D) 18

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int _{\pi }^{10\pi }{|\sin x|dx=\int_0^{\pi }{|\sin x|dx+\int _{\pi }^{10\pi }{|\sin x|dx}}}-\int_0^{\pi }{|\sin x|dx} $

$ =\int_0^{10\pi }{|\sin x|dx-\int_0^{\pi }{|\sin x|dx}} $

$ =10\int _{0}^{\pi }{|\sin x|dx-\int _{0}^{\pi }{|\sin x|dx}} $

$ =9\int _{0}^{\pi }{\sin xdx} $
$ [\because |\sin x| $ is periodic with period $ \pi $ and in $ [0,\pi ],\sin x\ge 0] $
$ =9[-\cos x]_0^{\pi }=9(-\cos \pi +\cos 0) $

$ =9(1+1)=18 $ .