Definite Integration Question 353

Question: The value of $ \int_0^{1}{x^{2}e^{x}dx} $ is equal to

[Pb. CET 2002]

Options:

A) $ e-2 $

B) $ e+2 $

C) $ e^{2}-2 $

D) $ e^{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

We have, $ I=\int_0^{1}{x^{2}e^{x}dx} $

therefore $ I=[x^{2}.e^{x}]_0^{1}-\int_0^{1}{2x.e^{x}dx} $

therefore $ I=e-2[xe^{x}-e^{x}]_0^{1} $

therefore $ I=e-2[e-e-(0-1)] $

therefore $ I=e-2 $ .