Definite Integration Question 356

Question: The value of integral $ \int _{1/\pi }^{2/\pi }{\frac{\sin (1/x)}{x^{2}}}dx= $

[IIT 1990]

Options:

A) 2

B) $ -1 $

C) 0

D) 1

Show Answer

Answer:

Correct Answer: D

Solution:

Put $ t=\frac{1}{x}\Rightarrow dt=-\frac{1}{x^{2}}dx $ as $ t=\frac{\pi }{2} $ and $ \pi $

$ \therefore $ $ \int _{1/\pi }^{2/\pi }{\frac{\sin ( \frac{1}{x} )}{x^{2}}dx} $

$ =-\int _{\pi /2}^{\pi }{\sin tdt=-[\cos t] _{\pi /2}^{\pi }} $

$ =-[ \cos \pi -\cos ( \frac{\pi }{2} ) ]=1 $ .