Definite Integration Question 361

Question: $ \int_0^{1}{\frac{{e^{-x}}}{1+{e^{-x}}}}dx= $

[Roorkee 1976]

Options:

A) $ \log ( \frac{1+e}{e} )-\frac{1}{e}+1 $

B) $ \log ( \frac{1+e}{2e} )-\frac{1}{e}+1 $

C) $ \log ( \frac{1+e}{2e} )+\frac{1}{e}-1 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Put $ 1+{e^{-x}}=t\Rightarrow -{e^{-x}}dx=dt $ , then we have $ I=\int_2^{1+\frac{1}{e}}{\frac{(t-1)(-dt)}{t}}=\int_2^{1+\frac{1}{e}}{( \frac{1}{t}-1 )}dt $

$ =[ {\log _{e}}t-t ]_2^{1+\frac{1}{e}}={\log _{e}}( 1+\frac{1}{e} )-( 1+\frac{1}{e} )-{\log _{e}}2+2 $

$ ={\log _{e}}( \frac{e+1}{2e} )-\frac{1}{e}+1 $ .