Definite Integration Question 363

Question: $ \int _{\pi \text{/4}}^{\pi \text{/2}}{e^{x}(\log \sin x+\cot x)dx=} $

[AI CBSE 1991]

Options:

A) $ {e^{\pi /4}}\log 2 $

B) $ -{e^{\pi /4}}\log 2 $

C) $ \frac{1}{2}{e^{\pi /4}}\log 2 $

D) $ -\frac{1}{2}{e^{\pi /4}}\log 2 $

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ I=\int _{\pi /4}^{\pi /2}{e^{x}(\log \sin x+\cot x)dx} $

$ I=\int _{\pi /4}^{\pi /2}{e^{x}\log \sin xdx+\int _{\pi /4}^{\pi /2}{e^{x}\cot xdx}} $

$ =\int _{\pi /4}^{\pi /2}{e^{x}\log \sin xdx+[e^{x}\log \sin x] _{\pi /4}^{\pi /2}} $

$ -\int _{\pi /4}^{\pi /2}{e^{x}\log \sin xdx} $

$ ={e^{\pi /2}}\log \sin \frac{\pi }{2}-{e^{\pi /4}}\log \sin \frac{\pi }{4}=\frac{1}{2}{e^{\pi /4}}\log 2 $ .