Definite Integration Question 364

Question: $ \int_0^{1/2}{\frac{x{{\sin }^{-1}}x}{\sqrt{1-x^{2}}}dx=} $

[IIT 1984]

Options:

A) $ \frac{1}{2}+\frac{\sqrt{3}\pi }{12} $

B) $ \frac{1}{2}-\frac{\sqrt{3}\pi }{12} $

C) $ \frac{1}{2}-\frac{\sqrt{3\pi }}{12} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Put $ t={{\sin }^{-1}}x\Rightarrow dt=\frac{1}{\sqrt{1-x^{2}}}dx, $ then $ \int_0^{1/2}{\frac{x{{\sin }^{-1}}x}{\sqrt{1-x^{2}}}dx=\int_0^{\pi /6}{t\sin tdt}} $

$ =[-t\cos t+\sin t]_0^{\pi /6} $

$ =[ -\frac{\pi }{6}.\frac{\sqrt{3}}{2}+\frac{1}{2} ]=[ \frac{1}{2}-\frac{\sqrt{3}\pi }{12} ] $ .