Definite Integration Question 365

Question: Let $ I_1=\int_1^{2}{\frac{dx}{\sqrt{1+x^{2}}}} $ and $ I_2=\int_1^{2}{\frac{dx}{x}} $ then

[Pb. CET 2004]

Options:

A) $ I_1>I_2 $

B) $ I_2>I_1 $

C) $ I_1=I_2 $

D) $ I_1>2I_2 $

Show Answer

Answer:

Correct Answer: B

Solution:

We have, $ (1+x^{2})>x^{2},\forall x $ ; $ \sqrt{1+x^{2}}>x,\forall x\in (1,2) $

therefore $ \frac{1}{\sqrt{1+x^{2}}}<\frac{1}{x},\forall x\in (1,2) $

therefore $ \int_1^{2}{\frac{dx}{\sqrt{1+x^{2}}}<\int_1^{2}{\frac{dx}{x}}} $

therefore $ I_1<I_2 $

therefore $ I_2>I_1 $ .