Definite Integration Question 367

Question: $ \int_0^{\pi }{\frac{dx}{1+\sin x}}= $

[CEE 1993]

Options:

A) 0

B) $ \frac{1}{2} $

C) 2

D) $ \frac{3}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_0^{\pi }{\frac{dx}{1+\sin x}}=\int_0^{\pi }{\frac{1-\sin x}{{{\cos }^{2}}x}dx=\int_0^{\pi }{({{\sec }^{2}}x-\sec x\tan x)dx}} $

$ =[\tan x-\sec x]_0^{\pi }=[\tan \pi -\sec \pi +1]=[0+1+1]=2 $ .