Definite Integration Question 375

Question: $ \int_0^{\pi /6}{(2+3x^{2})\cos 3xdx=} $

[DSSE 1985]

Options:

A) $ \frac{1}{36}(\pi +16) $

B) $ \frac{1}{36}(\pi -16) $

C) $ \frac{1}{36}({{\pi }^{2}}-16) $

D) $ \frac{1}{36}({{\pi }^{2}}+16) $

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ I=\int_0^{\pi /6}{( 2+3x^{2} )\cos 3xdx} $

$ =[ \frac{\sin 3x}{3}(2+3x^{2}) ]_0^{\pi /6}-\int_0^{\pi /6}{\frac{\sin 3x}{3}}.6x.dx $

$ =\frac{1}{36}({{\pi }^{2}}+16) $ .