Definite Integration Question 376

Question: $ \int_0^{\pi /2}{\frac{\sin x\cos x}{1+{{\sin }^{4}}x}dx=} $

[AISSE 1988]

Options:

A) $ \frac{\pi }{2} $

B) $ \frac{\pi }{4} $

C) $ \frac{\pi }{6} $

D) $ \frac{\pi }{8} $

Show Answer

Answer:

Correct Answer: D

Solution:

Put $ {{\sin }^{2}}x=t\Rightarrow dt=2\sin x\cos xdx $

Now $ \int_0^{\pi /2}{\frac{\sin x\cos x}{1+{{\sin }^{4}}x}dx=\frac{1}{2}\int_0^{1}{\frac{1}{1+t^{2}}dt=\frac{1}{2}[{{\tan }^{-1}}t]_0^{1}=\frac{\pi }{8}}} $ .