Definite Integration Question 377

Question: The value of $ \int _{1/e}^{\tan x}{\frac{tdt}{1+t^{2}}}+\int _{1/e}^{\cot x}{\frac{dt}{t(1+t^{2})}}= $

[IIT Screening]

Options:

A) $ -1 $

B) 1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

On integrating both functions, we get $ =\frac{1}{2}| \log (1+t^{2}) | _{1/e}^{\tan x}+| { \log t-\frac{1}{2}\log (1+t^{2}) } | _{1/e}^{\cot x} $

$ =\frac{1}{2}[ \log {{\sec }^{2}}x-\log ( 1+\frac{1}{e^{2}} ) ]+\log \cot x-\log ( \frac{1}{e} ) $

$ -\frac{1}{2}{ \log (cose{c^{2}}x)-\log ( 1+\frac{1}{e^{2}} ) } $

$ =-\log ( \frac{1}{e} )=\log e=1 $ .