Definite Integration Question 379

Question: $ \int _{-1/2}^{1/2}{(\cos x)[ \log ( \frac{1-x}{1+x} ) ]dx=} $

[Karnataka CET 2002]

Options:

A) 0

B) 1

C) $ {e^{1/2}} $

D) $ 2{e^{1/2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int _{-1/2}^{1/2}{(\cos x)[ \log ( \frac{1-x}{1+x} ) ]dx} $ ……(i) $ I=\int _{-1/2}^{1/2}{\cos (-x)[ \log ( \frac{1+x}{1-x} ) ]}dx $

therefore $ I=-\int _{-1/2}^{1/2}{\cos x[ \log ( \frac{1-x}{1+x} ) ]}dx $ ……(ii)

Adding (i) and (ii), we get $ 2I=\int _{-1/2}^{1/2}{\cos x[ \log ( \frac{1-x}{1+x} ) ]}dx-\int _{-1/2}^{1/2}{\cos x[ \log ( \frac{1-x}{1+x} ) ]dx} $

or $ 2I=0 $ or I = 0.