Definite Integration Question 381

Question: $ \int_0^{\pi /6}{\frac{\sin x}{{{\cos }^{3}}x}dx=} $

[SCRA 1979]

Options:

A) $ \frac{2}{3} $

B) $ \frac{1}{6} $

C) 2

D) $ \frac{1}{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ I=\int_0^{\pi /6}{\frac{\sin x}{{{\cos }^{3}}x}dx=\int_0^{\pi /6}{\tan x{{\sec }^{2}}xdx}} $

Put $ t=\tan x\Rightarrow dt={{\sec }^{2}}xdx, $ then we have $ I=\int_0^{\frac{1}{\sqrt{3}}}{tdt=}[ \frac{t^{2}}{2} ]_0^{\frac{1}{\sqrt{3}}}=\frac{1}{6} $ .