Definite Integration Question 385

Question: If $ \int_0^{t^{2}}{xf(x)dx=}\frac{2}{5}t^{5},t>0, $ then $ f( \frac{4}{25} )= $

[IIT Screening 2004]

Options:

A) $ \frac{2}{5} $

B) $ \frac{5}{2} $

C) $ -\frac{2}{5} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_0^{t^{2}}{xf(x)dx=\frac{2}{5}t^{5},t>0} $
Differentiate both sides w.r.t. t, we get $ t^{2}f(t^{2})2t=2t^{4} $

therefore $ f(t^{2})=t $
Put $ t=\frac{2}{5}, $ we get $ f( \frac{4}{25} )=\frac{2}{5} $ .