Definite Integration Question 386

Question: The value of the definite integral $ \int_0^{1}{\frac{dx}{x^{2}+2x\cos \alpha +1}} $ for $ 0<\alpha <\pi $ is equal to

[Kurukshetra CEE 2002]

Options:

A) $ \sin \alpha $

B) $ {{\tan }^{-1}}(\sin \alpha ) $

C) $ \alpha \sin \alpha $

D) $ \frac{\alpha }{2}{{(\sin \alpha )}^{-1}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_0^{1}{\frac{dx}{x^{2}+2x\cos \alpha +1}=\int_0^{1}{\frac{dx}{{{(x+\cos \alpha )}^{2}}+1-{{\cos }^{2}}\alpha }}} $

$ =\int_0^{1}{\frac{dx}{{{(x+\cos \alpha )}^{2}}+{{\sin }^{2}}\alpha }=[ \frac{1}{\sin \alpha }{{\tan }^{-1}}\frac{x+\cos \alpha }{\sin \alpha } ]}_0^{1} $

$ =\frac{1}{\sin \alpha }( {{\tan }^{-1}}\cot \frac{\alpha }{2}-{{\tan }^{-1}}\cot \alpha )=\frac{\alpha }{2}.\frac{1}{\sin \alpha } $ .