Definite Integration Question 388
Question: The greater of $ \int_0^{\pi /2}{\frac{\sin x}{x}dx} $ and $ \frac{\pi }{2}, $ is
Options:
A) $ \frac{\pi }{2} $
B) $ \int_0^{\pi /2}{\frac{\sin x}{x}dx} $
C) Nothing can be said
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
Since $ \sin x<x $ for $ 0<x\le \pi /2 $
So, $ \int_0^{^{\pi /2}}{\frac{\sin x}{x}dx<\int_0^{\pi /2}{1dx=\frac{\pi }{2}}} $ .