Definite Integration Question 39

Question: $ f(x)=f(2-x), $ then $ \int _{0.5}^{1.5}{xf(x)dx} $ equals

[AMU 1999]

Options:

A) $ \int _{0}^{1}{f(x)dx} $

B) $ \int _{0.5}^{1.5}{f(x)dx} $

C) $ 2\int _{0.5}^{1.5}{f(x)dx} $

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int _{0.5}^{1.5}{xf(x)dx=\int _{0.5}^{1.5}{(2-x)f(2-x)dx}} $ , $ [ \because \int_a^{b}{f(x)dx=\int_a^{b}{f(a+b-x)dx}} ] $

$ =\int _{0.5}^{1.5}{(2-x)f(x)dx}=2\int _{0.5}^{1.5}{f(x)dx-I} $

therefore $ I=\int _{0.5}^{1.5}{f(x)dx} $ .