Definite Integration Question 391

Question: The integral $ \int _{-1}^{3}{( {{\tan }^{-1}}\frac{x}{x^{2}+1}+{{\tan }^{-1}}\frac{x^{2}+1}{x} )}dx= $

[Karnataka CET 2000]

Options:

A) $ \pi $

B) $ 2\pi $

C) $ 3\pi $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int _{-1}^{3}{{ {{\tan }^{-1}}( \frac{x}{x^{2}+1} )+{{\tan }^{-1}}( \frac{x^{2}+1}{x} ) }}dx $

$ =\int _{-1}^{3}{{ {{\tan }^{-1}}( \frac{x}{x^{2}+1} )+{{\cot }^{-1}}( \frac{x}{x^{2}+1} ) }}dx $

$ =\int _{-1}^{3}{\frac{\pi }{2}dx=}2\pi $ .