Definite Integration Question 393

Question: $ \int _{-\pi /4}^{\pi /2}{{e^{-x}}\sin xdx}= $

[CEE 1993]

Options:

A) $ -\frac{1}{2}{e^{-\pi /2}} $

B) $ -\frac{\sqrt{2}}{2}{e^{-\pi /4}} $

C) $ -\sqrt{2}({e^{-\pi /4}}+{e^{-\pi /4}}) $

D) 0

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int _{-\pi /4}^{\pi /4}{{e^{-x}}\sin xdx}=[ \frac{{e^{-x}}}{2}(-\sin x-\cos x) ] _{-\pi /4}^{\pi /2} $

$ =\frac{1}{2}[{e^{-x}}(-\sin x-\cos x)] _{-\pi /4}^{\pi /2} $

$ =\frac{1}{2}[ {e^{-\pi /2}}(-1-0)-{ {e^{\pi /4}}( \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} ) } ]=-\frac{{e^{-\pi /2}}}{2} $ .