Definite Integration Question 394

Question: $ \int_0^{\pi /2}{\frac{1+2\cos x}{{{(2+\cos x)}^{2}}}=} $

[CEE 1993]

Options:

A) $ \frac{\pi }{2} $

B) $ \pi $

C) $ \frac{1}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_0^{\pi /2}{\frac{(1+2\cos x)}{{{(2+\cos x)}^{2}}}dx=\int_0^{\pi /2}{\frac{2(\cos x+2)-3}{{{(2+\cos x)}^{2}}}dx}} $

$ =2\int_0^{\pi /2}{\frac{dx}{2+\cos x}-3\int_0^{\pi /2}{\frac{dx}{{{(2+\cos x)}^{2}}}}} $

$ =4\int_0^{1}{\frac{dt}{3+t^{2}}-6\int_0^{1}{\frac{1+t^{2}}{{{(3+t^{2})}^{2}}}dt}} $ , $ [ Put\tan \frac{x}{2}=t ] $

$ =-2\int_0^{1}{\frac{dt}{3+t^{2}}+12\int_0^{1}{\frac{dt}{{{(3+t^{2})}^{2}}}}} $

$ =-2\int_0^{1}{\frac{dt}{3+t^{2}}+12}[ \frac{1}{6}.\frac{t}{t^{2}+3} ]_0^{1}+\frac{1}{6}\int_0^{1}{\frac{dt}{3+t^{2}}} $

$ =2[ \frac{t}{t^{2}+3} ]_0^{1}=\frac{1}{2} $ .