Definite Integration Question 398

Question: For which of the following values of m, the area of the region bounded by the curve $ y=x-x^{2} $ and the line $ y=mx $ equals $ \frac{9}{2} $

[IIT 1999]

Options:

A) $ -4 $

B) $ -2 $

C) 2

D) 4

Show Answer

Answer:

Correct Answer: B

Solution:

The equation of curve is $ y=x-x^{2} $
$ \Rightarrow x^{2}-x=-y $

therefore $ {{( x-\frac{1}{2} )}^{2}}=-( y-\frac{1}{4} ) $

This is a parabola whose vertex is $ ( \frac{1}{2},\frac{1}{4} ) $

Hence point of intersection of the curve and the line $ x-x^{2}=mx\Rightarrow x(1-x-m)=0 $ i.e., $ x=0 $ or $ x=1-m $

$ \therefore \frac{9}{2}=\int_0^{1-m}{(x-x^{2}-mx)dx=( \frac{x^{2}}{2}-\frac{x^{3}}{3}-m\frac{x^{2}}{2} )_0^{1-m}} $

$ =(1-m)\frac{{{(1-m)}^{2}}}{2}-\frac{{{(1-m)}^{3}}}{3}=\frac{{{(1-m)}^{3}}}{6} $

$ {{(1-m)}^{3}}=\frac{6\times 9}{2}=27\Rightarrow 1-m={27^{1/3}}=3\Rightarrow m=-2 $

Also, $ {{(1-m)}^{3}}-3^{3}=0 $

therefore $ (1-m-3)[{{(1-m)}^{2}}+9+(1-m)3]=0 $

therefore $ {{(1-m)}^{2}}+3(1-m)+9=0 $

therefore $ m^{2}-2m+1-3m+3+9=0 $

therefore $ m^{2}-5m+13=0 $

$ m=\frac{5\pm \sqrt{25-52}}{2} $ i.e., m is imaginary

Hence, $ m=-2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें