Definite Integration Question 40

Question: $ \int_0^{\pi /2}{\frac{x+\sin x}{1+\cos x}dx=} $

[MP PET 1989]

Options:

A) $ -\log 2 $

B) $ \log 2 $

C) $ \frac{\pi }{2} $

D) 0

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_0^{\pi /2}{\frac{x+\sin x}{1+\cos x}dx=\int_0^{\pi /2}{\frac{x+\sin x}{2{{\cos }^{2}}\frac{x}{2}}dx}} $

$ =\frac{1}{2}\int_0^{\pi /2}{x{{\sec }^{2}}\frac{x}{2}}dx+\int_0^{\pi /2}{\tan \frac{x}{2}dx} $ . \

$ =| x\tan \frac{x}{2} |_0^{\pi /2}=\frac{\pi }{2}\tan \frac{\pi }{4}=\frac{\pi }{2} $ .