Definite Integration Question 400

Question: The value of $ \int_0^{\pi /4}{\frac{1+\tan x}{1-\tan x}dx} $ is

[SCRA 1986]

Options:

A) $ -\frac{1}{2}\log 2 $

B) $ \frac{1}{4}\log 2 $

C) $ \frac{1}{3}\log 2 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_0^{\pi /4}{\frac{1+\tan x}{1-\tan x}dx=\int_0^{\pi /4}{\tan ( \frac{\pi }{4}+x )dx}} $

$ =[ \log { \sec ( \frac{\pi }{4}+x ) } ]_0^{-\pi /4}=-\frac{1}{2}\log 2 $ .