Definite Integration Question 406

Question: $ \int_0^{1}{\frac{dx}{\sqrt{1+x}-\sqrt{x}}=} $

[SCRA 1986]

Options:

A) $ \frac{2\sqrt{2}}{3} $

B) $ \frac{4\sqrt{2}}{3} $

C) $ \frac{8\sqrt{2}}{3} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_0^{1}{\frac{dx}{\sqrt{1+x}-\sqrt{x}}=\int_0^{1}{\frac{(\sqrt{1+x}+\sqrt{x})dx}{(\sqrt{1+x}-\sqrt{x})(\sqrt{1+x}+\sqrt{x})}}} $

$ =\int_0^{1}{\frac{(\sqrt{1+x}+\sqrt{x})}{1+x-x}}dx=\int_0^{1}{\sqrt{1+x}dx}+\int_0^{1}{\sqrt{x}}dx=\frac{4\sqrt{2}}{3} $ .