Definite Integration Question 407

Question: $ \int_0^{\pi /4}{\frac{4\sin 2\theta d\theta }{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }}= $

[SCRA 1986]

Options:

A) $ \pi /4 $

B) $ \pi /2 $

C) $ \pi $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ 4\int_0^{\pi /4}{\frac{\sin 2\theta d\theta }{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }=4\int_0^{\pi /4}{\frac{2\sin \theta \cos \theta d\theta }{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }}} $

$ =4\int_0^{\pi /4}{\frac{2\tan \theta {{\sec }^{2}}\theta d\theta }{{{\tan }^{4}}\theta +1}} $

{Dividing numerator and denominator by $ {{\cos }^{4}}\theta $ } Now put $ {{\tan }^{2}}\theta =t\Rightarrow 2\tan \theta {{\sec }^{2}}\theta d\theta =dt $ , then the reduced form is $ 4\int_0^{1}{\frac{dt}{t^{2}+1}}=4[{{\tan }^{-1}}t]_0^{1}=4[ \frac{1}{4}\pi -0 ]=\pi $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें