Definite Integration Question 407

Question: $ \int_0^{\pi /4}{\frac{4\sin 2\theta d\theta }{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }}= $

[SCRA 1986]

Options:

A) $ \pi /4 $

B) $ \pi /2 $

C) $ \pi $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ 4\int_0^{\pi /4}{\frac{\sin 2\theta d\theta }{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }=4\int_0^{\pi /4}{\frac{2\sin \theta \cos \theta d\theta }{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }}} $

$ =4\int_0^{\pi /4}{\frac{2\tan \theta {{\sec }^{2}}\theta d\theta }{{{\tan }^{4}}\theta +1}} $

{Dividing numerator and denominator by $ {{\cos }^{4}}\theta $ } Now put $ {{\tan }^{2}}\theta =t\Rightarrow 2\tan \theta {{\sec }^{2}}\theta d\theta =dt $ , then the reduced form is $ 4\int_0^{1}{\frac{dt}{t^{2}+1}}=4[{{\tan }^{-1}}t]_0^{1}=4[ \frac{1}{4}\pi -0 ]=\pi $ .