Definite Integration Question 409

Question: If $ x(x^{4}+1)\varphi (x)=1, $ then $ \int_1^{2}{\varphi (x)dx=} $

[SCRA 1986]

Options:

A) $ \frac{1}{4}\log \frac{32}{17} $

B) $ \frac{1}{2}\log \frac{32}{17} $

C) $ \frac{1}{4}\log \frac{16}{17} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Here $ \varphi (x)=\frac{1}{x(x^{4}+1)}=\frac{1}{x}-\frac{x^{3}}{x^{4}+1} $

therefore $ \int_1^{2}{\varphi (x)dx=\int_1^{2}{( \frac{1}{x}-\frac{x^{3}}{x^{4}+1} )}dx} $

$ =|\log x|_1^{2}-| \frac{1}{4}\log (x^{2}+1) |_1^{2}=\frac{1}{4}\log \frac{32}{17} $ .