Definite Integration Question 41

Question: The value of $ \int _{0}^{\pi /2}{\frac{{e^{x^{2}}}}{{e^{x^{2}}}+{e^{{{( \frac{\pi }{2}-x )}^{2}}}}}dx} $ is

[AMU 1999]

Options:

A) $ \pi /4 $

B) $ \pi /2 $

C) $ {e^{{{\pi }^{2}}/16}} $

D) $ {e^{{{\pi }^{2}}/4}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int_0^{\pi /2}{\frac{{e^{x^{2}}}dx}{{e^{x^{2}}}+{e^{( \frac{\pi }{2}-x )}}^{2}}} $ and $ I=\int_0^{\pi /2}{\frac{{e^{{{( \frac{\pi }{2}-x )}^{2}}}}dx}{{e^{{{( \frac{\pi }{2}-x )}^{2}}}}+{e^{x^{2}}}}} $

$ [ \because \int_0^{a}{f(x)dx=\int_0^{a}{f(a-x)dx}} ] $

$ \Rightarrow 2I=\int_0^{\pi /2}{1dx=(x)_0^{\pi /2}} $

$ \Rightarrow I=\frac{\pi }{4} $ .