Definite Integration Question 411

Question: The value of $ \int_1^{e^{2}}{\frac{dx}{x{{(1+\ln x)}^{2}}}} $ is

[J & K 2005]

Options:

A) $ 2/3 $

B) $ 1/3 $

C) $ 3/2 $

D) $ \ln 2 $

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int_1^{e^{2}}{\frac{dx}{x{{(1+\ln x)}^{2}}}} $

Let $ (1+\ln x)=t $

therefore $ dt=\frac{1}{x}dx $

Now, when $ x=1\to e^{2} $ , then $ t=1\to 3 $

$ \therefore $ $ I=\int_1^{3}{\frac{dt}{t^{2}}=[ \frac{-1}{t} ]_1^{3}=-[ \frac{1}{3}-1 ]}=\frac{2}{3} $ .