Definite Integration Question 414

Question: If for a real number $ y,

[y] $ is the greatest integer less than or equal to $ y, $ then the value of the integral $ \int\limits _{\pi /2}^{3\pi /2}{[2\sin x]dx} $ is [IIT 1999]

Options:

A) $ -\pi $

B) 0

C) $ -\frac{\pi }{2} $

D) $ \frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

We know $ -1\le \sin x\le 1\Rightarrow -2\le 2\sin x\le 2 $

$ I=\int _{\frac{\pi }{2}}^{\frac{3\pi }{2}}{[2\sin x]dx} $

$ =\int _{\frac{\pi }{2}}^{\frac{5\pi }{6}}{[2\sin x]dx+\int _{\frac{5\pi }{6}}^{\pi }{[2\sin x]dx}} $

$ +\int _{\pi }^{\frac{7\pi }{6}}{[2\sin x]dx+\int _{\frac{7\pi }{6}}^{\frac{3\pi }{2}}{[2\sin x]dx}} $

$ =\int _{\frac{\pi }{2}}^{\frac{5\pi }{6}}{(1)dx+\int _{\frac{5\pi }{6}}^{\pi }{(0)dx+\int _{\pi }^{\frac{7\pi }{6}}{(-1)dx+\int _{\frac{7\pi }{6}}^{\frac{3\pi }{2}}{(-2)}}dx}} $

$ =( \frac{5\pi }{6}-\frac{\pi }{2} )+0-( \frac{7\pi }{6}-\pi )-2( \frac{3\pi }{2}-\frac{7\pi }{6} ) $

$ =\frac{2\pi }{6}-\frac{\pi }{6}-\frac{4\pi }{6}=-\frac{\pi }{2} $ .